
Countermeasures against Timing Attack on AES

Advait Kelapure
Department of Computer Engineering

and Information Technology,
VJTI, Mumbai – 400019.

M. M. Chandane
Department of Computer Engineering

and Information Technology,
VJTI, Mumbai – 400019.

Abstract—Timing Attacks are a type of side channel
attacks. In timing attacks, leaking cache timing information is
used as the side channel. If the information about cache
timing of a software implementation of AES is collected and
analyzed by an attacker, the secret key of a crypto system can
be deduced. Hence AES is fallible to timing attack.

There are a few countermeasures in the form of software
code implementation which changes behavior of AES to
manipulate its timing information. But it causes decrease in
speed of computation which reduces the performance. So
there is a need to implement a new more efficient
countermeasure which this paper tries to suggest.

Keywords—Advanced Encryption Standard, Timing Attack,
Side Channel Attack

I. INTRODUCTION

The Advanced Encryption Standards or AES is a
symmetric block cipher, and is used throughout the world
for encryption. In 1997, National Institute of Standards and
Technology (NIST) originated it. Data Encryption
Standards (DES) which is predecessor of AES, was
becoming vulnerable, and hence AES came into existence
[1]. AES was capable to provide protection to the sensitive
data. It was to be easy to implement in hardware and
software, as well as in restricted environments (for
example, in a smart card) and offer good defenses against
various attack techniques [1].

Fig. 1: Working of AES [2]
Fig. 1 depicts working of AES. In AES, according to

the size of the key, the number of rounds for encryption is
varied. They are 10, 12 or 14 rounds for 128-bit, 192-bit or
256-bit key respectively. In each round except the final
round, four operations are taken part. They are Sub Bytes,

Shift Rows, Mix Columns and Add Round Key. Byte
arrays of size 4x4 (16 bytes) are used for each of these
operations. After a particular number of rounds according
to the size of key, the plain text is converted into the cipher
text[2].

Daniel J. Bernstein [3], in the year 2005 has practically
demonstrated timing attack on OpenSSL implementation
of AES and successfully deduced the secrete key. So AES
is subjected to fall to Side channel attack[3].

In side channel attack, attacker collects side channel
information about the cryptosystem. This side channel can
be any other information related to the execution of the
cryptosystem such as time required for execution, power
consumed by the machine to perform encryption,
electromagnetic radiations generated by the system, sound
produced during computation etc[4]. It does not deal with
the internal mechanism of the cryptosystem. These
methods are pioneered by Paul Kocher[5], who
demonstrated these side channel attacks on Diffie-
Hellman, RSA etc.

In all the side channel attacks, the underlying principle
is that physical effects caused by the operation of a
cryptosystem (on the side) can provide useful extra
information about secrets in the system, for example, the
cryptographic key, partial state information, full or partial
plaintexts and so forth[4].

Fig. 2: Timing Attack on AES [6]

Fig. 2 depicts timing attack on AES. Attacker gathers
information of time required for encrypting a particular
string from side channel and after doing side channel
analysis as demonstrated by Daniel J. Bernstein[3].

Timing Attacks are a kind of side channel attacks,
which uses leaking cache timing information as the side
channel[4]. As mentioned by Janaka Alawatugoda,
Darshana Jayasinghe, and Roshan Ragel[2], at the time of
execution, variables, data structures and other memory

Advait Kelapure et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4106-4109

www.ijcsit.com 4106

elements used for a particular program are loaded into the
main memory (RAM). Cache memory is a high-speed
memory, which is located in the processor for making the
memory access faster through spatial and temporal locality.
Typically, the recently accessed memory areas are loaded
into the cache. Since its high cost, cache memory is limited
in size and only a limited amount of data can be stored.
When a program needs to read a memory word, cache
hardware checks to see if the line needed is in the cache. If
so a cache hit occurs, the request is satisfied from the cache
and no memory request is sent to the main memory. A
cache hit normally takes two clock cycles. When the
memory word that the processor is looking for is not found
in the cache, a cache miss happens, where the data have to
be taken from the main memory and therefore it takes
longer time than cache hits. The time difference due to
cache hits and misses are used as leaking timing
information from the crypto system to perform cache
timing attack[2].

II. RELATED WORK

Bernstein[3] performed timing attack successfully by
using the OpenSSL 0.9.7a AES implementation on an
850MHz Pentium III Desktop Computer, running
FreeBSD-4.8 as a network server. The complete AES key
was extracted using a client machine and pointed out that
the same technique can be performed on more complicated
servers with additional timing information. Also testing is
done on an AMD Athlon, an Intel Pentium III, an IBM
PowerPC RS64 IV and a Sun UltraSPARC III processor
with positive results[3].

In the meantime, Kocher[5] experimented timing
attacks on implementations of Diffie-Hellman, RSA, DSS
and other crypto systems. Results stated that timing attacks
are centred on measuring the time it takes for a unit to
perform operations, where it lead to information about
secret keys and break the crypto system. The experiment
performed by Kocher[5] also stated that the attack is
computationally not much difficult and most of the time
only known cipher text is required and he has presented
some techniques for preventing the attacks.[8]

Darshana Jayasinghe, Roshan Ragel, and Dhammika
Elkaduwe[7] suggested countermeasures in the form of
software code implementation. This changes behavior of
AES to run it in random timing. That means if same secret
key and same plain text is used for each time still it will
take different timings after execution of encryption
function for several trials[7]. But the disadvantage of this
scheme is that executing random or fixed for loops
increases a lot of burden on CPU which causes AES to
slower down.

So, Udyani Herath, Janaka Alawatugoda, and Roshan
Ragel[8] in their suggested better option than usage of for
loops, which deals with number of CPU cycles to be
utilized for each execution of AES independent of its
inputs. This algorithm improves speed of AES over the
previous ones as random number generation and executing
these for loops either for random or fixed numbers
increased the encryption time. The numbers of clock cycles
for rounds themselves are used to calculate an average and
to perform constant encryption time by equaling clock

cycles up to the averaged value[8]. Initially by defining a
time stamp, number of clock cycles for each round is
obtained. Then the average is calculated incrementally for
each round. In between each round a 'for' loop is included
where it execute from zero to the number that is obtained
as the difference of averaged value and the clock cycle
value of the particular round[8].

The methodology suggested by Udyani Herath, Janaka
Alawatugoda, and Roshan Ragel[8] i.e. using average
number of clock cycles is modified using modulo operation
in place of average in this paper as average requires
multiplication, division, addition and subtraction. The
operations particularly division requires more number of
clock cycles. Instead if we use operator like Bitwise-AND
which takes only one clock cycle, the speed performance
will be improved

The objective of this paper is to contribute a
methodology that can give better performance over the
"AES with average clock cycles" methodology [8].

III. PROPOSED SOLUTION

The proposed method is modification of AES with
average clock cycles [8]. Rather than finding average of
the clock cycles, proposed method suggests to execute
each round in the CPU clocks that are multiple of 4. The
multiple of 4 involves to find the remainder after we divide
the The numbers of clock cycles for rounds by 4, and
executing that many extra clock cycles which are not more
than 3.

As X%4={0,1,2,3}, where X is any natural number.

Algorithm 1 AES with clock cycles that are multiples

of 4

1: procedure AES WITH CLOCK CYCLES THAT
ARE MULTIPLES OF 4
2: Define StartTime, EndTime, TimeElapsed,

ExtraClocks, ClockUsed
3: ...
4: Initial steps in AES before execution of rounds
5: ...
6: for each round i ϵ N
7: StartTime = getCurrentTimeStamp();
8: ...
9: Execute ith round of AES
10: ...
11: EndTime = getCurrentTimeStamp();
12: TimeElapsed = EndTime - StartTime;
13: ClocksUsed

=TimeElapsed/CPUFrequency;
14: ExtraClocks=4-ClocksUsed&3;
15: for i ϵ ExtraClocks
16: asm("NOP");
17: end for
18: end for
19: ...
20: Last steps in AES after execution of rounds
21: ...
22: end procedure

Advait Kelapure et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4106-4109

www.ijcsit.com 4107

The method defines the timestamp and obtain time
required to execute one round of AES. From the time
interval of round execution, number CPU clocks required
for execution is calculated. The modulo by 4 for the
number of clocks required for a round in AES is
calculated. A 'for' loop is included to execute 'NOP'
instructions, where it execute from zero to the number that
is obtained as a result of modulo operation subtracting
from 4. That makes a round to run in multiples of 4. This
methodology is titled as 'AES with clock cycles that are
multiple of four '

To optimize modulo by 4, the methodology suggests to
use Bitwise-AND (&) operation. On any number if we
perform Bitwise-AND (&) with 3, it yields the result of
modulo by 4. It takes only one CPU clock cycle to execute
so it is really an effective way of finding modulo.

Table I shows the number of CPU clocks required to
execute some operations:

Operation CPU Clock cycles
required

Addition 1
Assignment 1

Bitwise AND 1
Division 24

Multiplication 3
Subtraction 1

Table I: CPU clock required for various operations [9]

Average is found for a round as follows:

AVGi = (AVGi-1*(i - 1) + CCi)/i (1)

Where AVGi : Average calculated for ith round;
 CCi : Clock count of ith round

This operation involves five operations that is Addition,
Multiplication, Subtraction, Division and Assignment.

No. of clock cycles required to find Average

= 1(Assignment) + 3(Multiplication) + 1(Subtraction)
 +1(Addition) + 24 (Division)
= 30

The number of clock cycles required just to calculate
how many extra clocks are needed in AES with average
clock cycles method requires 30 clocks cycles.

No. of Clock cycles required to find multiples of 4

 = 1 (bitwise AND) + 1 (Assignment) + 1 (Subtraction)

 = 3

Also the number of clocks required to be executed are
lesser in this suggested solution than that of AES with
average clock cycles. So this shows the effectiveness of the
new countermeasure this paper suggests.

IV. RESULTS AND PERFORMANCE EALUATION

Proposed solution, AES with clock cycles that are
multiples of 4, has been implemented in Java along with
AES without any countermeasure for timing attack and
AES with average clock cycles [8]. The results have been
recorded and are discussed in the next section.

The three implementations i.e. AES without any
countermeasure for timing attack, AES with Average clock
cycles and AES with clock cycles multiple of 4 as
countermeasure are tested with the 10 various input strings.
Keeping the AES without any countermeasure as a
benchmark, the results are calculated clocks required for
other AES with average clock cycles and AES with clock
cycles that are multiple of 4 and the results shown in Table
II.

Sr.
No.

AES without
any security for

timing attack

AES with
Average

Clock Cycles

AES with
clock cycles
multiple of 4

1 100 738.042 186.85886
2 100 768.267 135.88
3 100 786.668 192.0075
4 100 925.041 182.165
5 100 842.379 165.43
6 100 649.019 144.451
7 100 707.732 156.324
8 100 707.11 166.332
9 100 501.334 175.324

10 100 638.724 170.355
Table II: Results

So the results here clearly indicate that the

countermeasure suggested in this paper gives a more
efficient substitute to the AES with average clock cycles
suggested in [8]. The comparative performance analysis for
AES, AES with average clock cycles and AES with clock
cycles that are multiple of 4 is shown in Fig. 3 and Fig. 4
in graphical form.

Fig. 3: Performance Graph

Advait Kelapure et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4106-4109

www.ijcsit.com 4108

Fig. 3 shows that clock cycles were required lesser for
AES with clock that are multiple of 4 than AES with
average clock cycles. The performance of the algorithm is
also tested in a real time network scenario using client-
server model and the results are displayed in a graph in
Fig. 4.

The performance graphs as shown in Fig. 3 and Fig. 4
has Experiment number on X axis, and clock cycles
required to encrypt the input on Y axis. Blue line indicates
performance of AES without any countermeasure for
timing attack for the sample inputs. The red curve indicates
performance of AES with clock cycles that are multiples of
4. The green curve indicates performance of AES with
average clock cycles[8].

Fig. 4: Performance graph in real time scenario

From the above graphs in Fig. 3 and Fig. 4, it is clear that
AES with clock cycles that are multiples of 4 gives better
performance over AES with average clock cycles[8].

V. CONCLUSION
 AES is fallible to timing attack. Different
countermeasures against timing attack on AES are studied.
There are countermeasures against Timing attack which
changes behavior of AES by manipulating timing
information of AES. But it causes decrease in speed of
computation which reduces the performance.

 The methodology suggested in this paper, AES with
clock that are multiples of 4, takes the multiple of 4 clock
cycles technique. The results prove that suggested
methodology in this paper has reduced time to encrypt or
decrypt using AES with clock cycles that are multiples of 4
over the "AES with average clock cycles".

REFERENCES
[1] ”What is Adanced Encryption Standards?”,

http://searchsecurity.techtarget.com/definition/Advanced-
Encryption-Standard, Dated: 11 July 2015

[2] Janaka Alawatugoda, Darshana Jayasinghe, and Roshan Ragel,
Countermeasures against Bernsteins Remote Cache Timing Attack,
ICIIS 2011, Sri Lanka.

[3] Daniel J. Bernstein, Cache-timing attacks on AES., Department of
Mathematics, Statistics, and Computer Science (M/C 249) The
University of Illinois at Chicago, IL 606077045.

[4] ”Side-channel attack”, https://en.wikipedia.org/wiki/Side-channel
attack, Dated: 11 July 2015

[5] Paul C. Kocher, Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems., CRYPTO 1996, 104113.

[6] ”Side-Channel Analysis”,
http://www.microsemi.com/products/fpga-soc/security/side-
channel-analysis, Dated: 11 July 2015

[7] Darshana Jayasinghe, Roshan Ragel, and Dhammika Elkaduwe
Constant Time Encryption as a Countermeasure against Remote
Cache Timing Attacks., ICIAfS, 2012

[8] Udyani Herath, Janaka Alawatugoda, and Roshan Ragel, Software
Implementation Level Countermeasures against the Cache Timing
Attack on Advanced Encryption Standard., ICIIS 2013, Sri Lanka

[9] Agner Fog, Lists of instruction latencies, throughputs and
microoperation breakdowns for Intel, AMD and VIA
CPUs,Technical University of Denmark. Copyright 1996 - 2014.
Last updated 2014-12-07.

[10] ”Encryption”, https://en.wikipedia.org/wiki/Encryption, Dated: 11
July 2015

[11] https://en.wikipedia.org/wiki/Symmetric-key algorithm Dated: 11
July 2015

[12] David Brumley and Dan Boneh, Remote timing attacks are
practical., USENIX Security Symposium. 2003.

Advait Kelapure et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 4106-4109

www.ijcsit.com 4109

